New criteria for univalent functions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sufficient Inequalities for Univalent Functions

In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.

متن کامل

Differential Inequalities and Criteria for Starlike and Univalent Functions

The main aim of this paper is to use the method of differential subordination to obtain a number of sufficient conditions for a normalized analytic function to be univalent or starlike in the unit disc. In particular, we find a condition on β so that each normalized analytic function f satisfying the condition ∣∣∣1 + zf ′′(z) 2f ′(z) − zf ′(z) f(z) ∣∣∣ < β, z ∈ Δ implies that f is univalent or ...

متن کامل

Some new subclasses of bi-univalent functions

The purpose of the present paper is to obtain the initial coefficients for normalized analytic functions f in the open unit disk U with its inverse g = f−1 belonging to the classes H σ (φ), ST n σ (α, φ), M n σ (α, φ) and L n σ(α, φ). Relevant connections of the results presented here with various known results are briefly indicated. Finally, we give an open problem for the readers. Mathematics...

متن کامل

Coefficient Estimates for a New Subclasses of m-fold Symmetric Bi-Univalent Functions

The purpose of the present paper is to introduce two new subclasses of the function class ∑m  of bi-univalent functions which both f  and f-1  are m-fold symmetric analytic functions. Furthermore, we obtain estimates on the initial coefficients for functions in each of these new subclasses. Also we explain the relation between our results with earlier known results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1975

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1975-0367176-1